
# **GENE THERAPY FOR HEMOGLOBINOPATHIES**

**Marina Cavazzana, MD, PhD**

**Biotherapy Department and Clinical Investigation Center,  
Assistance Publique Hôpitaux de Paris, Inserm, Paris, France**

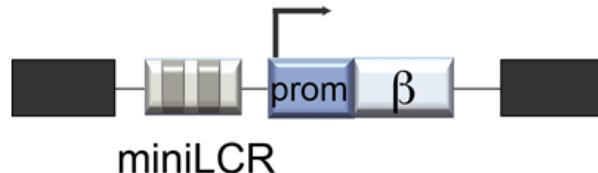
**Université de Paris-Cité , Paris, France  
Institut Imagine, Paris, France**

# LV-BASED GENE ADDITION THERAPIES



# CLINICAL TRIALS FOR $\beta$ -HEMOGLOBINOPATHIES (LV)

Table 1. Gene therapy clinical trials for TDT and SCD patients

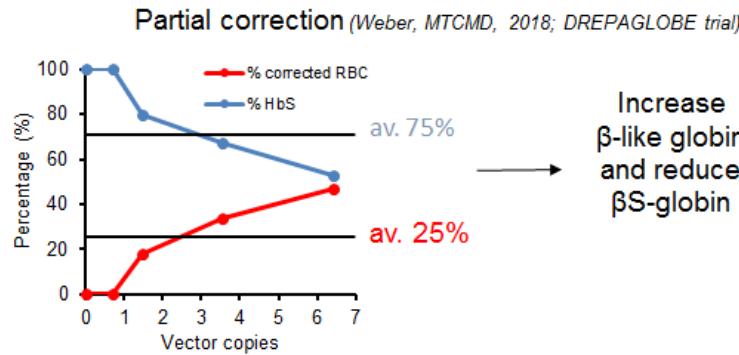

| Trial number                          | Phase | Sponsor                                                     | Site                                                                    | Start date/recruitment status    | Number of patients                    | Vector and transgene (nuclease and DP name) | Cell source                          | Conditioning                                                         | DP administration | Last update (www.clinicaltrials.gov) |
|---------------------------------------|-------|-------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------------|---------------------------------------------|--------------------------------------|----------------------------------------------------------------------|-------------------|--------------------------------------|
| <b><math>\beta</math>-Thalassemia</b> |       |                                                             |                                                                         |                                  |                                       |                                             |                                      |                                                                      |                   |                                      |
| LG001                                 | 1/2   | bluebird bio                                                | France                                                                  | September 2006/ completed        | 2*                                    | HPV59 $\beta^{+/\alpha^0}$ -globin          | G-CSF mPBCs or BM                    | Myeloablative (busulfan)                                             | IV                | NA                                   |
| NCT01639690                           | 1     | Memorial Sloan Kettering Cancer Center                      | United States                                                           | July 2012/active, not recruiting | 4                                     | TNS9.355 ( $\beta^+$ -globin)               | G-CSF mPBCs                          | Nonmyeloablative (busulfan 8 mg/kg)                                  | IV                | 6 June 2018                          |
| NCT02151526 (HGB205)                  | 1/2   | bluebird bio                                                | France                                                                  | July 2013/active, not recruiting | 4                                     | BB305 $\beta^{+/\alpha^0}$ -globin          | G-CSF + plerixafor mPBCs             | Myeloablative (busulfan)                                             | IV                | 31 January 2019                      |
| NCT01745120 (HGB204)                  | 1/2   | bluebird bio                                                | United States, Australia, Thailand                                      | August 2013/ completed           | 18                                    | BB305 $\beta^{+/\alpha^0}$ -globin          | G-CSF + plerixafor mPBCs             | Myeloablative (busulfan)                                             | IV                | 8 May 2019                           |
| NCT02453477                           | 1/2   | IRCCS San Raffaele                                          | Italy                                                                   | May 2015/active, not recruiting  | 10                                    | GLOBE (BA-globin)                           | G-CSF + plerixafor mPBCs             | Myeloablative (thiotepa + thioourea)                                 | IO                | 4 May 2018                           |
| NCT02906202 (HGB207)                  | 3     | bluebird bio                                                | United States, France, Germany, Greece, Italy, Thailand, United Kingdom | July 2016/recruiting             | 23 (estimated)                        | BB305 $\beta^{+/\alpha^0}$ -globin          | G-CSF + plerixafor mPBCs             | Myeloablative (busulfan)                                             | IV                | 31 January 2019                      |
| NCT02906202 (HGB212)                  | 3     | bluebird bio                                                | United States, France, Germany, Greece, Italy, Thailand, United Kingdom | June 2017/recruiting             | 15 (estimated)                        | BB305 $\beta^{+/\alpha^0}$ -globin          | G-CSF + plerixafor mPBC              | Myeloablative (busulfan)                                             | IV                | 31 January 2019                      |
| NCT03432344                           | 1/2   | Sangamo Therapeutics and Biomeris Therapeutics              | United States                                                           | February 2018/ recruiting        | 6                                     | ZFN (ST-400)                                | mPBCs                                | Myeloablative (busulfan)                                             | IV                | 4 February 2019                      |
| NCT03655678                           | 1/2   | Vertex Pharmaceuticals and CRISPR Therapeutics              | Germany, United Kingdom                                                 | September 2018/ recruiting       | 12 (estimated; may be expanded to 45) | CRISPR/Cas9 (CTX001)                        | CD34+ human HSPCs (mobilization: NA) | Myeloablative (busulfan)                                             | IV                | 3 May 2019                           |
| <b>SCD</b>                            |       |                                                             |                                                                         |                                  |                                       |                                             |                                      |                                                                      |                   |                                      |
| NCT02151526 (HGB205)                  | 1/2   | bluebird bio                                                | France                                                                  | July 2013/active, not recruiting | 3                                     | BB305 $\beta^{+/\alpha^0}$ -globin          | BM                                   | Myeloablative (busulfan)                                             | IV                | 31 January 2019                      |
| NCT02186418                           | 1/2   | Children's Hospital Medical Center, Cincinnati              | United States, Jamaica                                                  | July 2014/recruiting             | 10                                    | zGbg ( $\gamma$ -globin)                    | BM and plerixafor mPBCs              | Reduced intensity conditioning (melphalan 140 mg/m <sup>2</sup> BSA) | IV                | 6 May 2019                           |
| NCT02247843                           | 1     | University of California Children's Hospital, Los Angeles   | United States                                                           | July 2014/recruiting             | 6                                     | gLAS3-FB ( $\beta^{+/\alpha^0}$ -globin)    | BM                                   | Myeloablative (busulfan)                                             | IV                | 29 March 2019                        |
| NCT02140554 (HGB206)                  | 1     | bluebird bio                                                | United States                                                           | August 2014/ recruiting          | 50 (estimated; 3 groups [A, B, C])    | BB305 $\beta^{+/\alpha^0}$ -globin          | BM (A and B) plerixafor mPBCs (C)    | Myeloablative (busulfan)                                             | IV                | 20 May 2019                          |
| NCT03282656                           | 1     | David Williams, Boston Children's Hospital                  | United States                                                           | February 2018/ recruiting        | 7                                     | BCH_BB-LCR shRNA(mR) shRNAmir               | Plerixafor mPBCs                     | Myeloablative (busulfan)                                             | IV                | 24 May 2018                          |
| NCT03745287                           | 1/2   | Vertex Pharmaceuticals Incorporated and CRISPR Therapeutics | United States                                                           | November 2018/ recruiting        | 12 (estimated; may be expanded to 45) | CRISPR/Cas9 (CTX001)                        | NA                                   | Myeloablative (busulfan)                                             | IV                | 3 May 2019                           |

BM, bone marrow; BSA, body surface area; CRISPR, clustered regularly interspaced short palindromic repeat; DP, drug product; G-CSF, granulocyte-colony stimulating factor; IO, intraosseously; mPBC, mobilized peripheral blood cell; NA, not available; shRNA, short hairpin RNA; ZFN, zinc-finger nuclease.

\*P1 failed to engraft and received the backup cells.

# LV-BASED GENE ADDITION THERAPIES

## Lentiviral vector

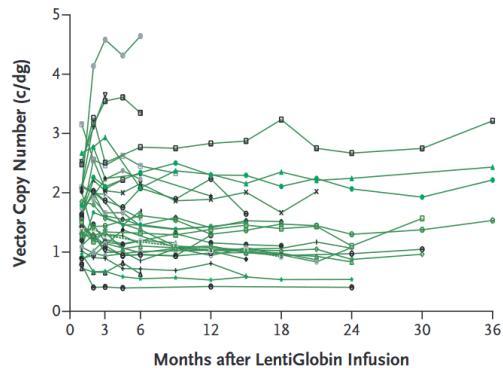



## $\beta$ -thalassemia

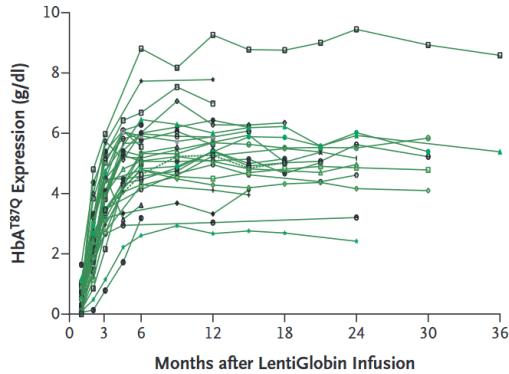
Partial/Full correction  
of  $\beta$ + thal  
Partial correction  
of  $\beta$ 0 thal

→ Increase  
 $\beta$ -like globin  
expression

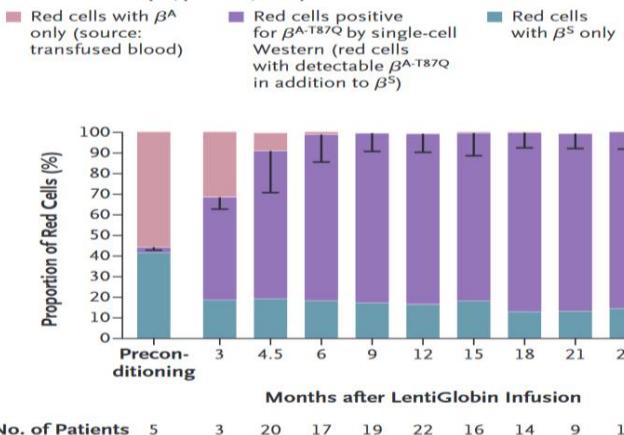
## SCD




Cavazzana, *Nature*, 2010; Marktel, *Nature Medicine*, 2019;  
Thompson, *NEJM*, 2018

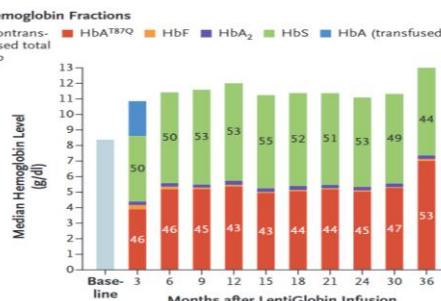

Ribeil, *NEJM*, 2017; Magrin, *Nat Med.*, under rev.

# BIOLOGICAL AND CLINICAL EFFICACY OF LENTIGLOBIN FOR SICKLE CELL DISEASE


Vector Copy Number in Peripheral Blood



HbA<sup>T87Q</sup> Expression




Red Cells with  $\beta^A$ ,  $\beta^{A-T87Q}$ , and  $\beta^S$



Legend for Hemoglobin Fractions:

- Nontransfused total Hb
- Nontransfused total Hb
- HbA<sup>T87Q</sup>
- HbF
- HbA<sub>2</sub>
- HbS
- HbA (transfused)



Median FU 17 months

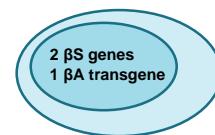
# CHANGES IN THE RATE OF VASO-OCCLUSIVE EVENTS BEFORE AND AFTER LENTIGLOBIN INFUSION



# SICKLE CELL DISEASE GENE ADDITION

---

## Phase I/II + Phase III Gene trials


|     |                                      |
|-----|--------------------------------------|
| n   | 32 (1 DCD)                           |
| OS  | 98% (1 DCD) +2 SAE recently reported |
| EFS | 75% ( around 50% HbS)                |

- No information available on the follow-up of patients with vascular problems / stroke and priapism: stop of progression
- Heterozygote after gene therapy is not a true carrier
- Some concerns on safety issues due the diseased bone marrow

# SILENCING HbS SYNTHESIS IS CRUCIAL FOR THE EFFICACY OF GENE THERAPY

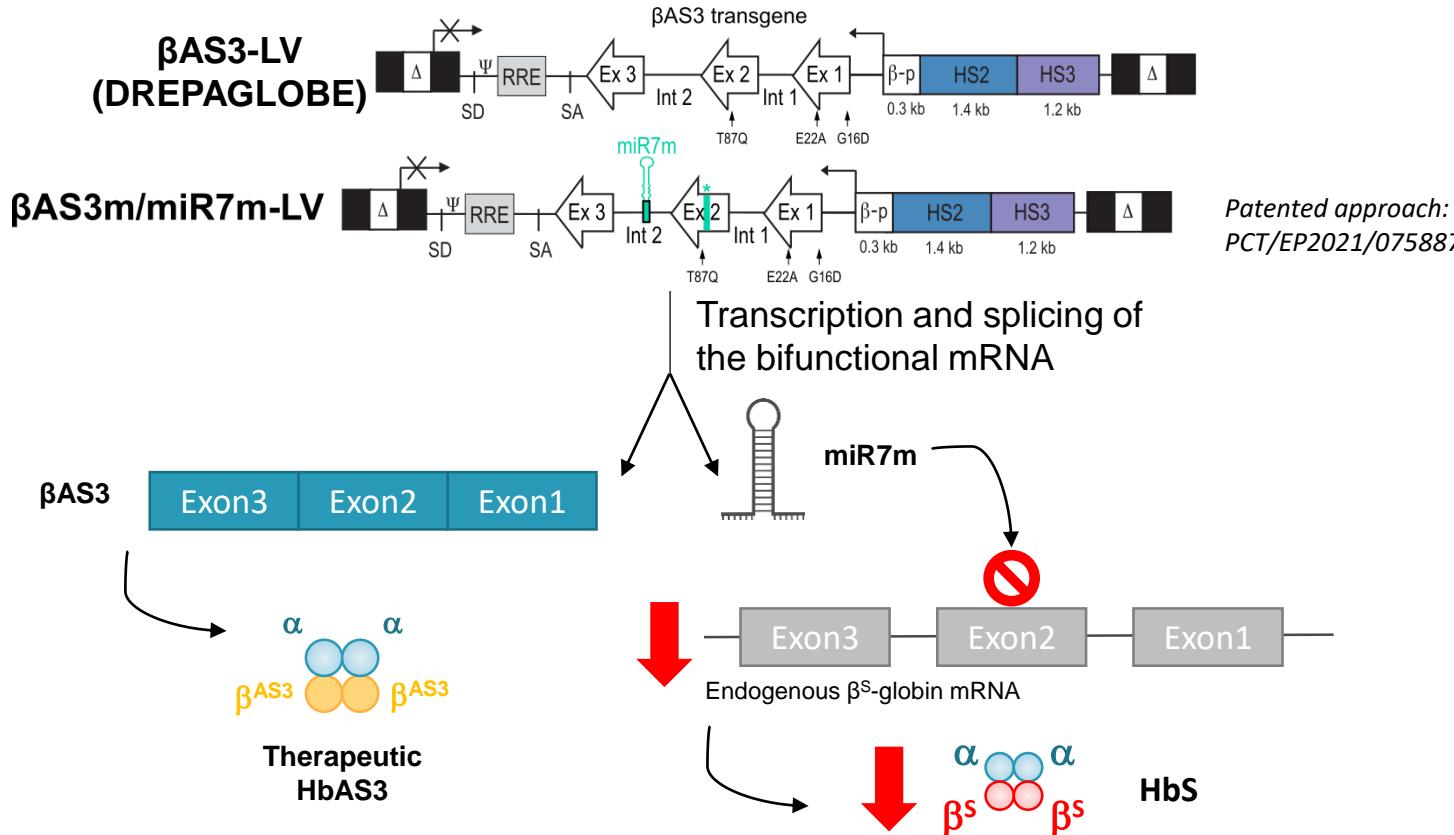
- The natural history of SCD indicates that the risk of sickling is reduced when the amount of HbS per cell is <40%
- The experience of allogeneic HSC transplantation indicates that SCD is corrected when the proportion of S-cells in the circulation is <30-40%
- The target of gene therapy is therefore to reduce the proportion of HbS to <40% of total Hb in >60-70% of the circulating erythrocytes


Vector encoding an anti-sickling globin  
**Moderate efficacy**

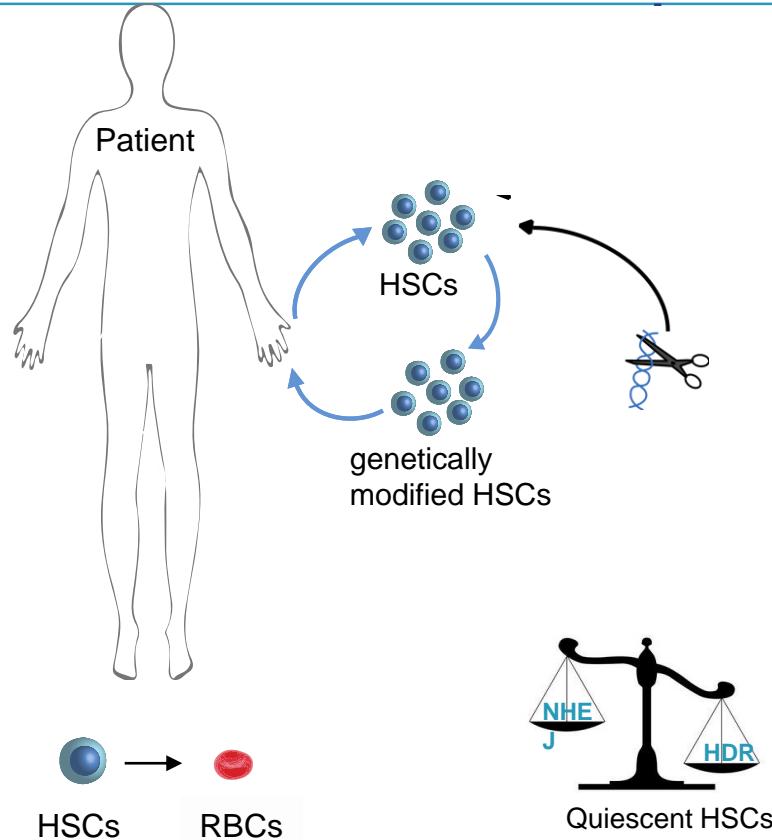


High risk of sickling



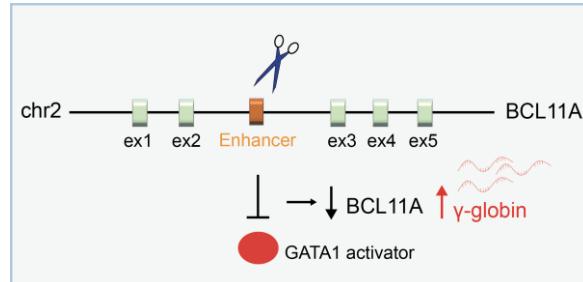

Vector coding the anti-sickling AS3 globin + anti-HbS miR  
**High efficacy**




Low risk of sickling



# GLOBE-AS3 WITH miRNA ANTI-HBS




# NUCLEASE MEDIATED STRATEGY FOR $\gamma$ -GLOBIN REACTIVATION



## $\gamma$ -globin reactivation

### KO of the $\gamma$ -globin repressor BCL11A



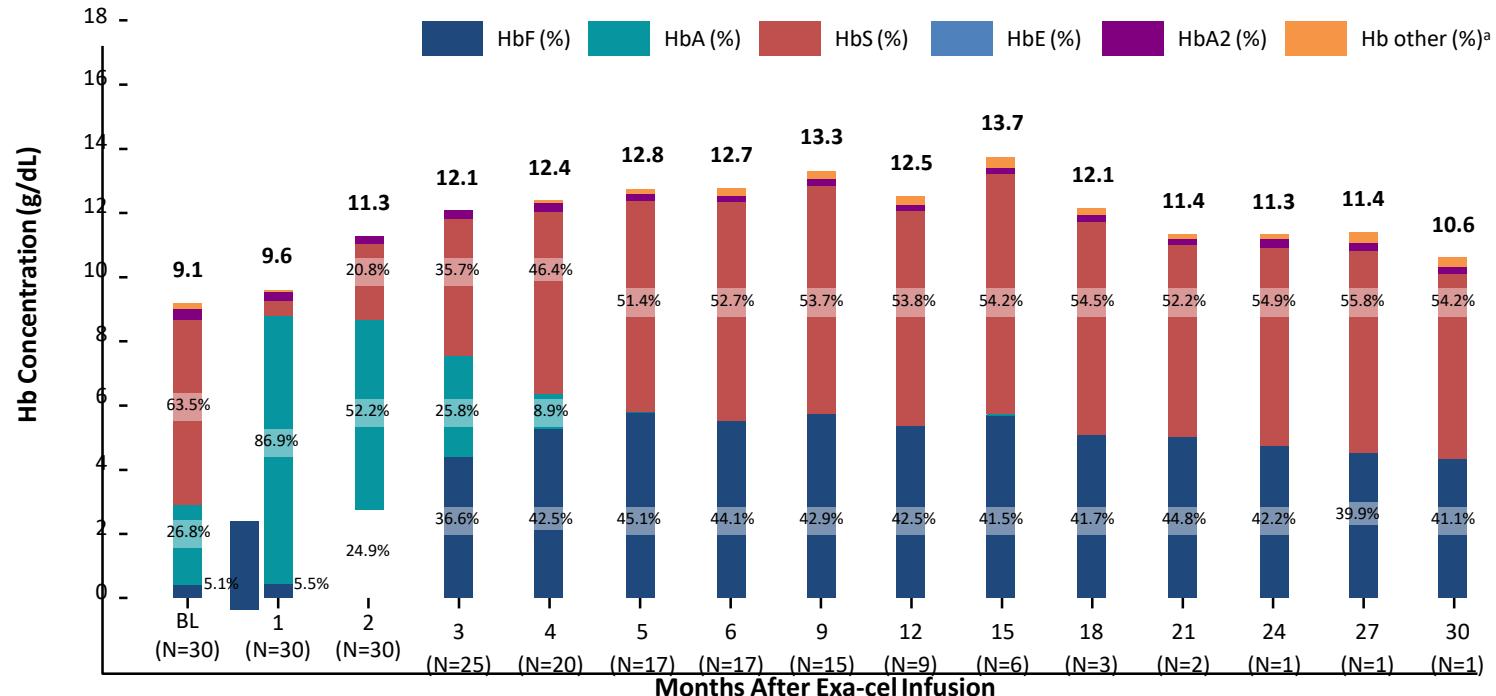
Pros: efficient in HSCs  
no need for corrective dDNA

Cons: DSB-induced toxicity

# BASELINE DEMOGRAPHICS AND CLINICAL CHARACTERISTICS OF THE 31 PATIENTS WITH SCD INFUSED WITH EXA-CEL



Exa-cel (SCD)  
n = 31


| Sex, n (%)                                                     |                |
|----------------------------------------------------------------|----------------|
| Male                                                           | 16 (51.6)      |
| Female                                                         | 15 (48.4)      |
| Genotype, n (%)                                                |                |
| $\beta^S/\beta^S$                                              | 29 (93.5)      |
| $\beta^S/\beta^0$                                              | 2 (6.5)        |
| Age at baseline, years, mean (min, max)                        | 22.5 (12, 34)  |
| Historical VOC episodes per year, <sup>a</sup> mean (min, max) | 3.9 (2.0, 9.5) |

**Data cut-off February 2022**

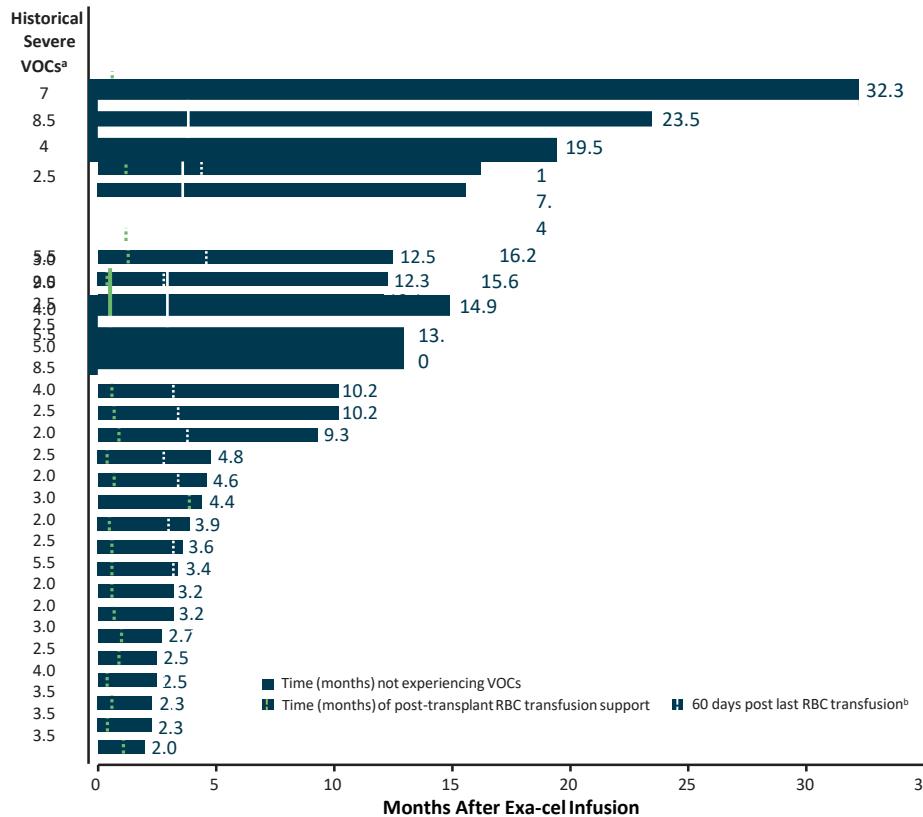
SCD, sickle cell disease; VOC, vaso-occlusive crisis.

<sup>a</sup> Annualized rate during the 2 years before signing of the informed consent form or the latest rescreening.

# PATIENTS WITH SCD HAD CLINICALLY MEANINGFUL INCREASES IN HBF (>20%) THAT OCCURRED EARLY AND WERE SUSTAINED OVER TIME



Data cut-off February 2022

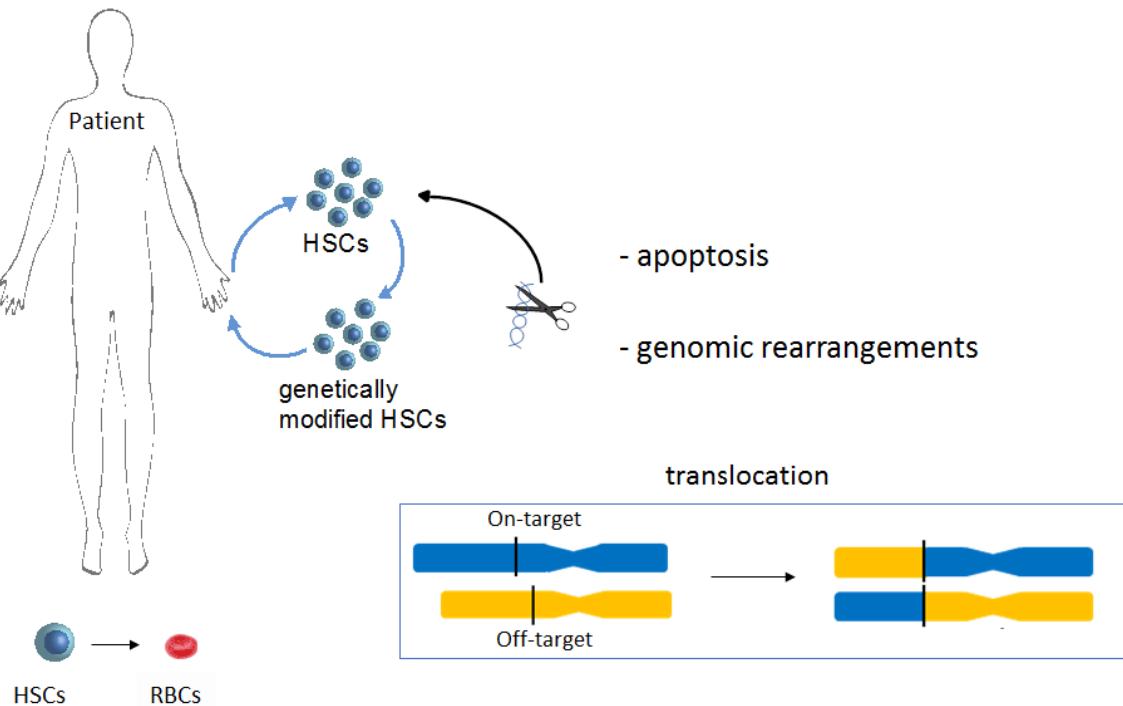

BL, baseline; Hb, hemoglobin; HbA, adult hemoglobin; HbA2, hemoglobin alpha 2; HbE, hemoglobin E; HbF, fetal hemoglobin; HbS, sickle hemoglobin; SCD, sickle cell disease.

Bars show mean Hb (g/dL). Labels indicate mean proportion of HbS and HbF as a percentage of total Hb. Mean total Hb concentrations are shown directly above bars.

<sup>a</sup> Hb adducts and other variants.

# ALL PATIENTS WITH SCD TREATED WITH EXA-CEL WERE VOC-FREE

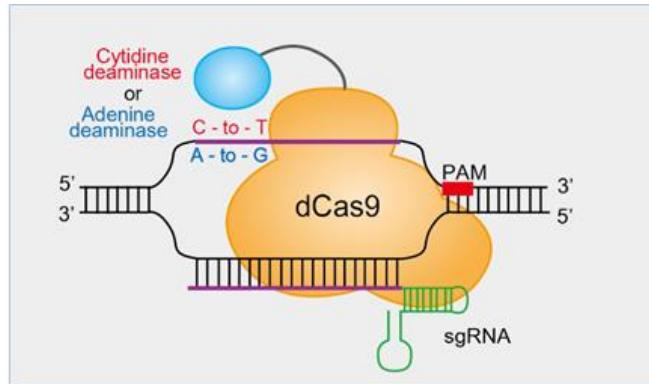
- Time (months) since **exa-cel infusion** is indicated by the dark bar
- 31 of 31 patients were **VOC-free** after exa-cel infusion (duration from 2.0 to 32.3 months)




Data cut-off February 2022

Each row in the figure on the right represents an individual patient.

<sup>a</sup>Pre-study severe VOCs annualized over 2 years; <sup>b</sup>Patients are evaluated for elimination of VOCs starting 60 days after their last transfusion.


# DSB-INDUCED TOXICITY: THE MAIN DRAWBACK OF NUCLEASE-BASED APPROACHES



# BASE EDITING



David Liu,  
Broad Institute

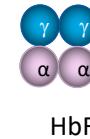
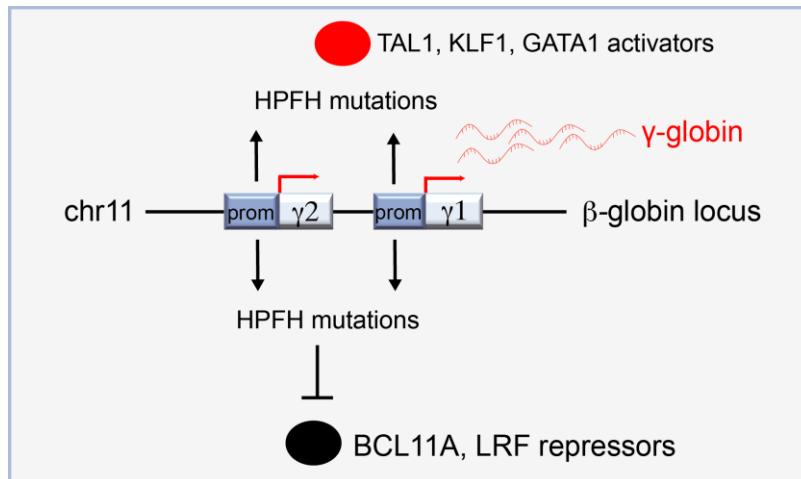


CBE

C>T

G>A

ABE



A>G

T>C

## Pros:

- *no DNA damage response/genotoxicity*
- *no donor DNA template*
- *efficient in quiescent cells (e.g. HSCs)*

# Hereditary persistence of fetal hemoglobin (HPFH)



# GENOME EDITING VS LV GENE ADDITION THERAPY OF HEMATOPOIETIC DISORDERS

- Lentivirus vector approach is safe and efficient approach in the correction of inherited disorders, but further effort is necessary to improve the access of the patients and substantially decrease the cost
- HDR-based gene correction, as opposed to gene addition, may not only restore the function but also the physiological expression of the gene. However, HDR has a low efficiency in hematopoietic stem cells and presents important side effects. Further improvements are needed in HSC
- Base editing is very efficient in hematopoietic stem cells, with lower detection of off-target or immune response
- Costs: non-viral delivery costs might be lower than LV

## Acknowledgements

Hôpital Universitaire Necker - Enfants Malades, Paris,  
France  
Paris Descartes – Sorbonne Paris Cite University,  
Imagine Institute

**Laure Joseph**

- F. Suarez
- O. Hermine
- M. De Montalembert
- B. Neven

- E. Magrin
- M. Semeraro
- A. Miccio
- A. Chalumeau
- M. Brusson
- NM. Antoniou
- W. El Nemer
- P. Bartolucci
- C. Lagresle
- E.Six

CEA, Institut of Emerging Diseases and Innovative Therapies  
and University of Paris-Sud, Fontenay-aux-Roses, France (and  
also Brigham & Women's Hospital and Harvard Medical  
School, Boston, MA, USA, and Mahidol University and  
Ramathibodi Hospital, Bangkok, Thailand)

- Philippe Leboulch
- E. Payen
- ART/GENETHON/AFM

**A.Galy**

**S.Braun**

**BLUEBIRD.BIO, Inc**

**VERTEX TH**

**H.Frangoul and all the PI of the clinical trial**

**Most importantly, we wish to thank all the patients and their families**